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We investigate a theoretical model of the pulsatile motion of a contaminant-doped
semi-infinite bubble in a rectangular channel. We examine the fluid mechanical
behaviour of the pulsatile bubble, and its influence on the transport of a surface-
inactive contaminant (termed surfinactant). This investigation is used to develop a pre-
liminary understanding of surfactant responses during unsteady pulmonary airway
reopening. Reopening is modelled as the pulsatile motion of a semi-infinite gas
bubble in a horizontal channel of width 2a filled with a Newtonian liquid of viscosity
µ and constant surface tension γ . A modified Langmuir sorption model is assumed,
which allows for the creation and respreading of a surface multilayer. The bubble is
forced via a time-dependent volume flux Q(t) with mean and oscillatory components
(QM and Qω, respectively) at frequency ω. The flow behaviour is governed by the
dimensionless parameters: CaM = µQM/(2aγ ), a steady-state capillary number, which
represents the ratio of viscous to surface tension forces; CaΩ = µQω/(2aγ ), an oscilla-
tory forcing magnitude; Ω = ωµa/γ , a dimensionless frequency that represents the
ratio of viscous relaxation to oscillatory-forcing timescales; and A= 2CaΩ/Ω , a
dimensionless oscillation amplitude. Our simulations indicate that contaminant depo-
sition and retention in the bubble cap region occurs at moderate frequencies if
retrograde bubble motion develops during the oscillation cycle. However, if oscillations
are too rapid the ensuing large forward tip velocities cause a net loss of contaminant
from the bubble tip. Determination of an optimal oscillation range may be important
in reducing ventilator-induced lung injury associated with infant and adult respiratory
distress syndromes by increasing surfactant transport to regions of collapsed airways.

1. Introduction
The overall goal of this study is to explore the pulsatile motion of a semi-infinite

bubble in a narrow channel and its impact on the transport of soluble surface-
associated contaminant. The fluid mechanical investigation is an extension of the
classical steady-flow problem previously investigated by Fairbrother & Stubs (1935).
Taylor (1961), Bretherton (1961) and many others. The present study may be of
fundamental importance to a range of applications including the development of
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microfluidic devices (Geng et al. 2001), the coating of surfaces, flow through porous
media, and biological fluid mechanics (Eckmann & Diamond 2004; Ghadiali, Banks &
Swarts 2002). In this paper, we investigate the general fluid flow, and the transport of
a surface-inactive contaminant (surfinactant). This transport problem is investigated
in order to develop a foundation for understanding transport phenomena of surface-
active contaminants in this system.

Our interest in this problem stems from its relevance to pulmonary mechanics. The
lung is comprised of successive generations of bifurcating airways that communicate
inspired air with pulmonary alveoli for gas exchange with the blood. Distal airways
are compliant structures that have a thin layer of lining fluid coating their interior
surfaces. The first inspiration of a newborn clears the amniotic fluid by introducing a
long bubble of air that ‘opens’ the airways. Healthy neonates achieve this inspiration
without assistance. However, premature neonates can develop respiratory distress
syndrome (RDS), where their underdeveloped lungs may have a high lining-fluid
surface tension due to inadequate surfactant production. In adults, acute respiratory
distress syndrome (ARDS) can result from sepsis or smoke inhalation and may also
cause airway collapse. In both RDS and ARDS, treatment may require large ven-
tilation pressures to force air into the lungs, but this is done at the risk of causing
ventilator-induced lung injury (Dos Santos & Slutsky 2000; Fujiwara et al. 1980;
Krishnan & Brower 2000; Whitehead & Slutsky 2002). Bilek, Dee & Gaver (2003)
showed experimentally that mechanical stresses associated surface tension may cause
epithelial cell damage, which can be prevented with a high concentration of pulmonary
surfactant. This damage appears to be related to the normal-stress gradient that
sweeps across the cells as the airway reopens (Kay et al. 2004). For more informa-
tion about surfactant physicochemical hydrodynamics and pulmonary mechanical
behaviour, the reader is referred to the review paper by Grotberg (2001).

RDS is treated with surfactant replacement therapy (SRT), which has been modelled
by Halpern, Jensen & Grotberg (1998). The administered exogenous surfactant func-
tions similarly to its endogenous analogue – adsorbing to the air–liquid interface,
reducing the surface tension, and lowering driving pressures. Even though SRT has
lowered the mortality rate, RDS remains one of the leading causes of premature infant
death (MacDorman et al. 2002). The efficacy of SRT may be related to the delivery
and transport mechanisms of the replacement surfactant. Surfactant transport is
intimately connected to the fluid flow in a reopening airway. The reopening is related
to two-phase flow in a flexible-walled system (Gaver et al. 1996; Gaver, Samsel &
Solway 1990; Hazel & Heil 2003; Heil 2000; Jensen et al. 2002; Yap et al. 1994);
however, many of the interfacial flow and transport properties can be understood by
examining the behaviour in a rigid-walled system (Ghadiali & Gaver 2003). We will
use this approximation in the present study.

When surfactant is incorporated, two major transport mechanisms must be con-
sidered: bulk convection/diffusion and interfacial sorption kinetics. Figure 1 depicts
the dynamics of this surfactant transport system. The surfactant concentration of
the fluid bulk, C(x, t), is in dynamic equilibrium with the subsurface concentration,
Cs(s, t), where s is the interfacial coordinate. Only surfactant molecules that are
located in the fluid subsurface can be adsorbed to the air–liquid interface, where the
surfactant concentration is denoted Γ . In the present investigation we will focus on
adsorption-limited transport, which is appropriate if concentrations of surfactant are
large .(Ghadiali & Gaver 2003).

Interfacial surfactant (Γ ) is transported by flux to the interface and then by surface
convection and diffusion. At low forward bubble velocities, fluid recirculates at the
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Figure 1. Surfactant dynamics of a Hele-Shaw cell bubble system. C designates the bulk
concentration; Cs represents the subsurface fluid surfactant concentration. The surface tension
γ is dependent on the local surfactant surface concentration Γ . The flow field of the
system creates an uneven distribution of surfactant along the interface, which results in
non-equilibrium surface tensions and Marangoni stresses τM , that affect the flow circulation.

bubble tip and causes convection of surfactant molecules toward the converging
stagnation point at the bubble tip and away from the diverging stagnation points in the
bubble transition region. We define this ‘transition region’ as the area of the interface
connecting the uniform thin film to the bubble cap. Dynamic interfacial expansion or
compression associated with bubble motion can cause the surface tension to deviate
from γeq , the static equilibrium surface tension of a surfactant-doped interface. This
causes both non-equilibrium normal stress and Marangoni stress, which can increase
the interfacial pressure drop (Ghadiali & Gaver 2003; Ratulowski & Chang 1990;
Yap & Gaver 1998). Prior studies indicate that pulmonary surfactant is not capable
of adsorbing rapidly enough to eliminate non-equilibrium effects and remobilize the
interface, even under extremely high concentrations. For this reason, during steady
reopening the airway pressures are likely to remain large (Ghadiali & Gaver 2000).

In this paper, we investigate whether unsteady motion can be used to increase the
transport of contaminant to an air–liquid interface. In particular, we explore the
implications of dynamic expansion and compression of the interface and the creation
of contaminant multilayers. Several studies (Diamant et al. 2000; Lipp et al. 1998;
Lu et al. 2002; Takamoto et al. 2001) have shown that monolayers of pulmonary
surfactant adsorbed to an air–liquid interface collapse under compression to form
sub-surface multilayers (figure 2). These multilayers can respread to the primary
interface when the interfacial surface area expands (Ding et al. 2001). Multilayer
formation and respreading are key mechanisms responsible for the surface tension
hysteresis observed during the cycling of a surfactant-doped air–liquid interfaces with
high bulk concentrations (Krueger & Gaver 2000).

Several parameters are important when considering multilayer formation and re-
spreading. The maximum equilibrium surface concentration, Γ∞, represents the maxi-
mum number of molecules in sorptive equilibrium able to occupy a resting interface.
The maximum dynamic surface concentration, Γmax, is the maximum surface concen-
tration of surfactant molecules the interface can withstand under area compression.
At Γmax, the surface monolayer will begin to collapse if compression continues.
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Figure 2. Surfactant multilayer formation under surface compression. At static equilibrium
at a high bulk concentration, the primary layer (1◦) surfactant concentration is Γ∞. Under
surface compression, the maximum surface concentration (Γmax) can be reached. If interface
compression continues, collapse of the surfactant molecules from the interface can lead to
secondary (2◦) multilayer formation.

During interfacial expansion following multilayer formation, the multilayer spreading
concentration, Γmls, is the minimum surface concentration that must be obtained
under area expansion before respreading may occur. These critical concentrations are
labelled in the surface tension–surface area hysteresis loop shown in figure 3, adapted
from experimental data (Krueger & Gaver 2000).

We hypothesize that pulsatile (flow with a non-zero mean and oscillatory com-
ponents) two-phase flow will create dynamic changes in the flow field that influence
the transport characteristics of surfactant onto and along the bubble interface by
creating cyclic interfacial expansion and contraction. In addition, this fluid flow
could create and respread surfactant multilayers. In the present study, we explore the
transport of a ‘passive’ surface-associated contaminant. While our model incorporates
an energetic preference for surfinactant to be interfacially located, no surface activity
is associated with this orientation. Surface transport is examined using monolayer
and multilayer models assuming bulk-equilibrium dynamics characteristic of high
bulk concentrations. We aim to identify a combination of pulsatile flow parameters
for optimized contaminant deposition and retention in the bubble cap region. A
computational model that implements a blend of boundary element method (BEM)
and lubrication theory is developed to analyse this system.

2. Model formulation
We examine the pulsatile motion of a semi-infinite gas bubble in a horizontal

channel of width 2a filled with an incompressible Newtonian liquid of viscosity µ,
constant surface tension γ , and density ρ (figure 4). All flow and transport equations
are expressed in the laboratory reference frame. We consider a two-dimensional
Cartesian geometry with position vectors x∗ = (x∗, y∗) and velocities u∗ = (u∗(x∗, t∗),
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Figure 3. Example surface tension–area hysteresis loop from pulsating bubble surfactometer
experiments using Infasurf. Surface concentrations Γ∞, Γmax, and Γmls are shown to indicate
the location of collapse and respreading mechanisms in the system. Adapted from Kruegar &
Gaver (2000).
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Figure 4. Schematic of relevant forces/parameters of the propagating bubble system.

v∗(x∗, t∗)), where t∗ is time, P ∗ = P ∗(x∗, t∗) is the fluid pressure (P ∗ = 0 defines the
gas-phase pressure), s∗ is the distance along the meniscus from the bubble tip and the
asterisk denotes dimensional variables.

A downstream two-dimensional flow rate Q∗(t∗) is prescribed that, by mass con-
servation, determines the time-dependent behaviour of the air finger:

Q∗(t∗) = Q∗
M + Q∗

ω sin(ωt∗), (1)

where Q∗
M is the mean component, Q∗

ω is the oscillation amplitude component, ω

is the frequency of oscillation. The resulting upstream gas finger width is 2aβ; the
dynamics of the inviscid air is neglected.

2.1. Governing equations

The governing equations of fluid motion and transport are scaled to determine the
dimensionless parameters describing the relative importance of various mechanisms
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Timescale Interpretation

TRelax = aµ/γ surface-tension-driven relaxation of a viscous film
TIC = a/(Q∗/2a) creation of new interface of length a by the bubble lengthening with an

average velocity Q∗/2a
TForce = 1/ω rate of bubble oscillation
(TDiff)i = a2/Di surface diffusion over a length a

TAds = 1/(kaC0) adsorption of surfinactant with a rate constant kaC0

TDes = 1/kd desorption of surfinactant with a rate constant kd

Table 1. Definition and description of the relevant timescales.

Dimensionless parameter Timescale relationship

Ca(t) = µQ∗(t)/(2aγ ) TRelax/TIC
Ω = ωaµ/γ TRelax/TForce
Pei = γ a/(Diµ) (TDiff)i/TRelax

Stai = ka
i C0aµ/γ TRelax/TAds

Stdi = kd
i aµ/γ TRelax/TDes

Stai /CaM TIC/TAds

Stdi /CaM TIC/TDes

Pei · CaM (TDiff)i/TIC

Table 2. Definition of dimensionless parameters and their relationship to timescales.

in the system using

u∗ = Uu =

(
γ

µ

)
u, P ∗ =

(γ

a

)
P, x∗ = ax, t∗ = TRelaxt =

(
aµ

γ

)
t,

s∗ = as, Q∗ =

(
2γ a

µ

)
Q, h∗ = ah, C∗ = C0C, Γ ∗ = ΓeqΓ,

j ∗ = Jj =

(
UΓeq

a

)
j,




(2)

where h = h(x, t) is the height of the meniscus from the bottom wall, C0 is the equi-
librium bulk concentration, Γeq is the equilibrium surface concentration, and j ∗

represents the surfinactant flux magnitude. The velocity scale, U = γ /µ, represents
the interfacial relaxation velocity; thus, TRelax = aµ/γ is the timescale related to the
surface-tension-driven relaxation of a viscous film. We will see below that the relation-
ship between TRelax and other timescales for this system (interfacial creation, diffusion,
and sorption, summarized in table 1) provides the basis for many of the dimensionless
parameters in this model. The definitions of all dimensionless parameters are provided
below, and their relationships to the timescales are summarized in table 2.

2.1.1. Flow field

The prescribed dimensionless volume flux and far downstream velocity profile
equations are

Ca(t) = CaM + CaΩ sin(Ωt),

u(y, t) = − 3
2
Ca(t)(y2 − 1),

}
(3)

where Ca(t) = (µ/γ )(Q∗(t)/2a) is the capillary number with mean (CaM ) and oscilla-
tory (CaΩ ) components, and Ω = ωa(µ/γ ) is the dimensionless oscillation frequency.
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Ca reflects not only the ratio of viscous to interfacial stresses, but also represents the
ratio of two distinct timescales for this system. In this context, Ca = TRelax/TIC, where
TIC = a/(Q∗/2a) is the timescale associated with the creation of new interface of
length a by the bubble lengthening with an average velocity Q∗/2a. Likewise, Ω =
TRelax/TForce, where TForce is the forcing timescale (TForce =1/ω). The far-downstream
velocity profile in (3) represents a Poiseuille flow assumption that is valid far from
the bubble tip.

The oscillatory displacement amplitude A= 2CaΩ/Ω represents the dimensionless
stroke length of bubble oscillation. If A= 1, the bubble oscillates with a displacement
approximately equal to the channel half-width. This parameter is used to compare
effectively the system behaviour across a wide range of values for CaΩ and Ω in an
experimentally relevant format.

We assume that inertia and unsteadiness are insignificant for the viscous flow, thus
Stokes flow is appropriate:

∇P = ∇2u,

∇ · u = 0.

}
(4)

The Stokes flow assumptions are addressed in § 5.3. It is important to note that
unsteadiness still arises in the formulation from the kinematic boundary condition
described below.

Fluid in contact with the channel wall satisfies no-slip and no-penetration condi-
tions:

u = 0 at y = ±1. (5)

Assuming constant surface tension, the interfacial stress jump condition is

[σ · n̂int] = −κ n̂int, (6)

where σ = −P I +(∇u + ∇uT ) is the stress tensor for the viscous lining fluid, n̂int is the
outward-facing interfacial normal vector, and κ = ∇ · n̂int is the interfacial curvature.

We simulate this system using the boundary element method (BEM) with time-
dependent boundary conditions, in accordance with the kinematic boundary condi-
tion:

DY
Dt

∣∣∣∣
lab

= (ulab · n̂)n̂ = (ulab)nn̂, (7)

where Y = Y (x, y, t) is the location of points describing the interface, and (ulab)n =
(ulab · n̂) is the normal component of interfacial particle velocity in the laboratory
frame. The boundary element regime is coupled to a lubrication theory region that
describes the thin film. This method of solution is described in § 3.

2.1.2. Transport

Because we model bulk-equilibrium (sorption-limited) transport in the system, the
concentration of surfinactant (C∗) is assumed uniform in the fluid bulk. As we study
a passive contaminant, the interfacial surface tension (γ ) remains constant. We investi-
gate both a monolayer model and a multilayer model that incorporates monolayer
collapse (multilayer generation) with respreading dynamics from the secondary layer
to the interfacial primary layer, following Krueger & Gaver (2000).
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The governing transport equations provide solutions for Γi(s, t), where i = 1, 2 for
the primary (1◦) and secondary (2◦) layers, respectively:

1◦:
∂Γ1

∂t
+

∂

∂s
(Γ1us) + Γ1κun = Pe−1

1

∂2Γ1

∂s2
+ j s

1 − j c
1 + j r

2 ,

2◦:
∂Γ2

∂t
+

∂

∂s
(Γ2us) + Γ2κun = Pe−1

2

∂2Γ2

∂s2
+ j s

2 + j c
1 − j c

2 , −j r
2 .


 (8)

Pei = γ a/Diµ = (TDiff)i/TRelax is the surface Péclet number, where (TDiff)i = a2/Di is
the timescale for surface diffusion over a length a. Di is the surface diffusivity for
each surfinactant layer concentration, Γi . The velocities us and un are the interfacial
tangential and normal components, respectively. The terms (∂/∂s)(Γ us) and Γ κun

reflect the effects due to local stretching of the interface from tangential and normal
motion of a curved surface, respectively (Stone 1990). The sorption, collapse, and
respreading terms are represented by the flux magnitudes j s

i , j
c
i , and j r

i , respectively.
Far upstream we define ∂Γi/∂s → 0; however, if the domain is sufficiently long, Γ1 → 1,
and Γ2 → 0. Truncation of the domain does not influence the concentration field of
the bubble cap and transition regions.

The sorption flux magnitudes of the primary and secondary layers, following a
modified Langmuir adsorption model, are

1◦: j s
1 =




(
Sta1Cs

)
(Γ̃ − Γ1) − Std1

(
Γ1 − Γ2

2

)
, Γ1 < Γ̃

−Std1

(
Γ1 − Γ2

2

)
, Γ1 � Γ̃ ,

2◦: j s
2 = −Std2Γ2,




(9)

where Γ̃ = Γ∞/Γeq and Stai = ka
i C0aµ/γ and Stdi = kd

i aµ/γ are Stanton numbers that
relate TRelax to the adsorption timescale (TAds = 1/(kaC0)) and desorption timescale
(TDes = 1/kd). These sorption timescales are associated with the time required for
molecular sorption to, or from, an interface with ka

i C0 and kd
i as the adsorption and

desorption rates. Γ2/2 refers to the physical blocking of primary layer desorption that
occurs if a secondary bilayer exists (figure 2) that, due to the folding geometry, only
covers half of the area in comparison to the same concentration on the 1◦ layer.

The collapse and respreading flux magnitudes are

j c
1 = −Γ1κun − ∂

∂s
(Γ1us), Γ1 � (Γ̃ max)1, (10)

j c
2 = −Γ2κun − ∂

∂s
(Γ2us), Γ2 � (Γ̃ max)2, (11)

j r
2 = Γ2κun +

∂

∂s
(Γ2us), Γ1 � Γ̃ mls, (12)

where (Γ̃ max)1 = (Γmax)1/Γeq , (Γ̃ max)2 = 2(Γ̃ max)1, and Γ̃ mls = Γmls/Γeq. These fluxes
reflect the transfer of surfinactant between the 1◦ and 2◦ layers that must occur due
to surface stretching dynamics. Equation (10) allows the surfinactant to maintain a
constant 1◦ layer concentration as the interface is compressed to concentrations greater
than (Γ̃ max)1 by balancing the surface stretching terms in (8). Upon expansion (12)
reintroduces surfinactant from the 2◦ layer to the 1◦ layer if surfinactant concentration
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in the 1◦ layer falls below Γ̃ mls. Here, collapse from the 1◦ layer to the 2◦ layer can
only occur once the 1◦ layer has reached the maximum allowable interfacial concen-
tration, (Γ̃ max)1. Respreading from the 2◦ layer back to the 1◦ layer can occur only
under conditions of interface expansion (i.e. (κun + ∂us/∂s � 0) once the 1◦ layer
concentration has decreased below the critical multilayer respreading concentration,
Γ̃ mls. We define (Γ̃ max)2 = 2(Γ̃ max)1 to account for the folding of the 1◦ layer into the
bilayer that forms the 2◦ layer (figure 2).

2.2. Parameter values

Our goal is to investigate the relationship between surfinactant adsorption to an
air–liquid interface that is dynamically changing its length. If the timescales for
surfinactant sorption (TAds and TDes) are less than the timescale for interfacial growth
(TIC), the surface concentration will remain in near equilibrium. As we shall see, these
timescales are not equivalent for pulmonary surfactant, and we set our transport
parameters accordingly to investigate this situation.

We assume values for the system properties that reflect a two-dimensional repre-
sentation of a bronchial airway (µ = 0.05 g cm−1 s−1, γeq = 25 dyn cm−1, a = 0.1 cm,
QM = 0.1 cm2 s−1, ka ∼ 0.5 cm3 mg−1 s−1, C0 = 1mg ml−1) following Ghadiali & Gaver
(2000). These estimates provide CaM = TRelax/TIC ∼ 10−3 and Stai = TRelax/TAds ∼ 10−4,
where IC denotes Interface Creation. Most importantly, TIC/TAds = Stai /CaM ∼ 10−1,
so the adsorption timescale is much greater than TIC. Thus, adsorption will not
be rapid enough to create an equilibrium surface concentration at the growing
interface.

Unfortunately, simulating the dynamic system at Ca ∼ O(10−3) is not feasible
because of the creation of very thin films that are difficult to resolve with the
boundary element method. Thus, we increased CaM to O(10−1), which still produces
a thin film and maintains TRelax < TIC. To maintain the correct transport balances,
sorption parameters must be adjusted in accordance with the increased CaM so
that TIC/TAds = Stai /CaM ∼ 10−1. This implies that adsorption is ten times slower than
the creation of new interface. For this reason, for CaM = 10−1 we study Stai = 10−2.
Similarly, Stdi /CaM = 10−3 is investigated by letting Stdi = 10−4. This maintains the
correct ratio of desorption to interface creation, and ensures that the desorption rates
are two orders of magnitude less than adsorption rates.

Physiologically, the surface Péclet number is approximately Pei = TDiff/TRelax ∼
5 × 107. To preserve the relationship between surface diffusion and interfacial creation,
PeiCaM = TDiff/TIC ∼ 5 × 104. This implies that the creation of new interface is much
faster than the interfacial diffusion of surfinactant. We preserve the small diffusive
effects characteristic of the physiologic system while using a smaller, more computa-
tionally stable, Péclet number by maintaining (PeiCaM ) = 50. Calculations on a subset
of problems at Pe Ca = 100 indicated that the behaviour of the system was insensitive
to an increase in PeiCaM ; in all cases diffusion was sufficiently small that its primary
function was to provide numerical stability. This indicates that PeiCaM = 50 was
adequate to determine the behaviour of the system.

We investigate the dimensionless frequency, Ω = TRelax/TForcing = µωa/γ over the
range 0.005 � Ω � 5, in search of optimal transport behaviour. To investigate
the response in detail, we focus on three frequencies: low (Ω =0.025), moderate
(Ω =0.085), and high (Ω =0.4) for CaM = 0.1, A= 5. These values of Ω span quasi-
steady to highly unsteady responses. Furthermore, these studies permit us to explore
the general characteristics of the transport behaviour and identify features that result
in optimal surfinactant uptake, which occurs near Ω = 0.085.
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Figure 5. Node discretization of boundary element method region. A higher density of
nodes along the interface is necessary for precise calculation of curvature and normal stress.

Surface u v τx τy

1 0 0 – –
2 (−3/2)Ca(t)(y2 − 1) 0 – –
3 – 0 0 –
4 – – κ n̂x κ n̂y

5 − 1
2
κxend

[(y + 1)2 − 2(h + 1)(y + 1)] – – κxend
[(y + 1) − (h + 1)]

Table 3. Dimensionless boundary conditions used on the surfaces in the boundary element
method regime specified in figure 5. κxend

represents ∂κ/∂x at the junction between the boundary
element and lubrication theory regimes.

3. Method of solution
3.1. Boundary element method (BEM)

Symmetry along the channel centreline allows the half-domain of the bubble tip
region to be discretized into a series of quadratic elements along each of five surfaces
as shown in figure 5. At each BEM node, four flow quantities describe the complete
solution: the velocities u and v, as well as τ1 and τ2, the x and y stresses. One value of
stress or velocity for each direction must be specified in the problem formulation; the
system is solved for the remaining quantities in accordance with the Stokes equations
using the BEM formulation described in Halpern & Gaver (1994) and Pozrikidis
(1992). A complete listing of the velocity and stress quantities stipulated for each
surface of the boundary is given in table 3. Conditions must be carefully specified at
the corners of the domain to account for discontinuous boundary conditions (table 4).

3.2. Lubrication theory

To shorten the boundary element region and identify suitable boundary conditions for
the BEM domain, lubrication theory was used to describe the thin liquid film dynamics
along the channel wall upstream of the bubble tip. Following standard lubrication
theory approximations, we define the position of the air–liquid interface at y = h(x, t),
and the evolution equation for this region in the inertial frame of reference is

∂h

∂t

∣∣∣∣
lab

=
1

3

∂

∂x

(
h3 ∂κ

∂x

)
. (13)
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Position (x, y) u v τx τy

First node on S1 (−3, −1) – 0 κxend
(h) –

Last node on S1 (3, −1) – 0 −3Ca(t) –
First node on S2 (3, −1) – 0 – 3Ca(t)
Last node on S2 (3, 0) (3/2)Ca(t) – – 0
First node on S3 (3, 0) – 0 0 –
Last node on S3 (0, 0) – 0 0 –
First node on S4 (0, 0) – – −κtip 0
Last node on S4 (−3, h) – – κendn̂4x

κendn̂4y

First node on S5 (−3, h) – – −κend 0
Last node on S5 (−3, −1) 0 – – −κend(h)

Table 4. Dimensionless corner conditions (rotating counterclockwise around the domain)
specified for BEM domain. nx and ny are the x- and y-components of the normal vector,
respectively.

Far upstream we impose dh/dx = 0 so that the thin film remains quiescent. Note that
we have retained the full curvature terms in this version of the lubrication theory,
instead of representing κ ∼ ∂2h/∂x2. These terms were retained because κ is funda-
mental to the application of the BEM, and were available because of our use of a
master surface that connected the lubrication and BEM domains (see § 3.4).

3.3. Kinematic translation to the meniscus frame of reference

To prevent elongation of the computational domain throughout the simulation, we
translate the node-points using a reference frame that is fixed to the bubble tip
(meniscus frame). It is important to note that this translation is performed kine-
matically and does not affect the equations of motion, which are based in the inertial
(laboratory) frame of reference. The translation is achieved by subtracting the tip
velocity, utip, from the x-component of velocity calculated from the equations of
motion. In the meniscus frame, the bubble tip is thus always located at (0, 0) on the
(x, y) spatial coordinate axes.

In the boundary element region, the nodes are moved only in the direction normal
to the interface, which maintains the nodal spacing more effectively than if they were
allowed to move tangentially. In the meniscus frame, the interfacial evolution equation
(7) becomes

DY
Dt

∣∣∣∣
men

= [(ulab)n − utipnx]n̂, (14)

where nx is the x-component of the surface normal unit vector, and (ulab)n =(ulab · n̂).
In the meniscus frame for the lubrication domain, the laboratory frame kinematic
boundary condition (13), responsible for nodal displacement becomes

∂h

∂t

∣∣∣∣
men

=
1

3

∂

∂x
(h3κx) − utipnx. (15)

3.4. Time stepping

A critical feature that was necessary to achieve a converged solution was the accurate
geometrical definition of interfacial normal unit vectors and curvatures. For this, we
used a single master interface that spans the boundary element (BEM) and lubrication
theory (LUB) domains. Nodal velocities in the lubrication domain are calculated using
cubic splines of the interfacial shape h to determine interfacial values for use in (15).
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With the boundary and corner conditions defined following tables 3 and 4, the BEM
equations were solved to compute the unknown interfacial velocities in the bubble
cap region. The LUB and BEM data were combined with the interfacial geometrical
characteristics to quantify the rates of change of the 1◦ and 2◦ layer concentrations
in accordance with the transport equations (8). Simultaneous time stepping of the
flow-field and transport equations was accomplished using the NetLib subroutine
LSODES (Livermore Solver for Ordinary Differential Equations with general Sparse
Jacobain matrices). After each 10th cycle, the nodal positions were redistributed, and
the next cycle restarted with the new definitions of interfacial geometry.

The time-stepping process was repeated until a converged cycle (termed stationary
state) was achieved, where the tip-frame nodal positions and the interfacial concentra-
tions did not change significantly from cycle to cycle. We used 2-norms to evaluate
the change between successive cycles. For concentration, we defined

‖Γ ‖2 =
1

N

√√√√ N∑
i=1

(Γi,t − Γi,t−T )2,

where N equals the number of points in the boundary element regime. To compare
convergence between systems of different frequencies, our convergence criterion was
based upon ‖Γ ‖2/(unit dimensionless time) = Ω‖Γ ‖2. We deemed a solution as
converged when Ω‖Γ ‖2 < 5 × 10−4. Decreasing this convergence criterion did not
modify our results (less than 0.1 % variation in results at stationary state). Parameters
were varied sequentially, using the last converged solution as the initial condition for
the subsequent parameter set.

4. Results
In this section we discuss first the flow field for steady and pulsatile flow to provide

a qualitative description of the fluid flow that influence the transport phenomena.
Second, the nature of these steady and pulsatile flow fields is related to the instan-
taneous interfacial concentration responses. Finally, cycle and cycle-spatial averaging
techniques are used to evaluate the average response to pulsatile forcing for a single
combination of CaM and A over a range of Ω . Although we performed analyses
for all combinations of CaM = 0.1, 0.05 and A= 1, 5, we present detailed data only
for CaM = 0.1 and A= 5. Cycle-averaged data are shown for other combinations of
parameter values. Since the system is symmetric with respect to the channel centreline,
half-domain data are presented for all flow-field representations. As stated above, we
span values of Ω to determine optimal responses, and investigate the behaviour in
detail for three values of Ω: low (Ω = 0.025), moderate (Ω = 0.085) and high (Ω = 0.4).
The moderate value of Ω provides nearly optimal transport for CaM =0.1, A= 5, and
the optimization of this transport will be explored in detail.

4.1. Flow field

Figure 6(a) presents the streamlines for steady forward flow with CaM = 0.1. In the
general case of forward steady-state motion, the flow field is characterized by two
stagnation points: a converging (+) stagnation point located at the bubble tip and a
diverging (−) stagnation point located along the interface toward the thin-film region.
In the meniscus frame, fluid is driven along the interface away from the diverging
transition-region stagnation point toward the thin film and the bubble tip. In § 5, we
refer to this flow type as ‘Case I’.
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Figure 6. Forward (a) and reverse (b) steady-state flow streamlines. The location of the
converging (+) and diverging (−) stagnation points at the tip and in the interfacial transition
region are shown for CaM = ±0.1.

Streamlines for steady reverse flow with CaM = −0.1 are presented in figure 6(b).
Here, the flow field is also characterized by two stagnation points: a diverging (−) tip
stagnation point and a converging (+) transition-region stagnation point. In the
meniscus frame, fluid is driven along the interface from both the tip and the thin film
toward the transition region. This type of flow will later be referred to as ‘Case III’
in § 5.

Throughout the pulsatile motion, the instantaneous locations of the converging
and diverging stagnation points along the meniscus are important in determining
the interfacial transport dynamics of the system. Figure 7 shows the instantaneous
streamlines for CaM =0.1, A= 5, and Ω =0.085, with plots (a–f ) evenly spaced every
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Figure 7. Instantaneous streamlines for points every 1/6 cycle for CaM = 0.1, A = 5, Ω =0.085.
Note that the tip stagnation point is converging (+) in frames (a–d) and diverging (−) in
frames (e, f ). Conversely, the transition-region stagnation point switches from diverging (a–d)
to converging (e, f ).

sixth of the cycle. Note that since this is an unsteady system, the interface is not
a streamline, and thus streamlines can intersect the interface. Converging tip and
diverging transition-region stagnation points exist for points (a–d). For each of these
instances, though, the diverging stagnation point is at a different location along the
meniscus, changing the length of interface characterized by tip-directed fluid sweeping.
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At points (e) and (f ), diverging tip and converging transition-region stagnation points
are evident. Again, the location of the converging stagnation point is different for
the two cycle points. Figure 7 also demonstrates the variation in film thickness that
occurs throughout an oscillation cycle.

Figure 8 shows the relationship between the bubble velocity (utip), tip curvature (κtip)
and tip pressure drop (
Ptip) as a function of the applied Ca(t) for CaM = 0.1 and
A= 5 for Ω = 0.025, 0.085 and 0.4. Figure 8(a) shows only small hysteresis areas for utip

for each Ω , with utip at Ca(t) = CaM nearly identical to the steady-state value (shown
by the �). However, as demonstrated below, the cycle-averaged velocity is increased
by oscillation, which has an impact on the fluid volume that coats the channel wall. In
contrast, κtip (figure 8b) demonstrates clear hysteresis that increases in magnitude with
increasing Ω . The counterclockwise direction for these loops shows that as the bubble
tip is accelerating, the curvature is smaller than it is in the deceleration phase. In
addition, κtip at Ca(t) = CaM differs significantly from the stationary-state value during
both the accelerating and decelerating phases. At high oscillation rates (Ω = 0.4), the
curvature becomes negative during reverse flow, as demonstrated by the meniscus
profile shown in the inset of figure 8(b). This results in a temporary tip-splitting
response that disappears during the forward phase of the oscillation. Figure 8(c)
shows that the time-dependent 
Ptip has hysteresis that increases with increasing Ω .
In addition, the slope of this hysteresis loop (d(
Ptip)/d(Ca)) increases at moderate
frequencies (Ω =0.085); however, the low- and high-frequency oscillations result in
equivalent slopes. Note that the direction of rotation of the 
Ptip loop is the same
as the κtip loop, indicating that the curvature dictates much of the pressure-drop
characteristic. However, for moderate oscillation (Ω = 0.085) 
Ptip < 0 during reverse
flow even though κtip > 0; this is an indication of the importance of viscous stresses
in determining the interfacial pressure drop during oscillation.

Figure 9 and figure 10 present the average interfacial and flow characteristics that
are modified by the introduction of an oscillatory component to the steady flow.
Figure 9(a) shows that the cycle-averaged tip velocity (ūtip) increases with pulsatility.
A marked increase in ūtip compared to the steady-state value occurs at larger Ω

when CaM is increased; however, this transition is not coincident with the onset of
retrograde motion (CaΩ =CaM ). An increase in oscillation magnitude from A= 1
to A= 5 causes an increase of ūtip, with approximately a 15 % gain occurring with
high-magnitude oscillation.

Figure 9(b) shows the average tip curvature (κ̄tip) as a function Ω . Here, the beha-
viour is clearly non-monotonic. With A= 1, κ̄tip increases until Ω ∼ 1; subsequently κ̄tip

decreases dramatically for larger values of Ω . Since CaΩ =AΩ/2, the initial increase
in curvature is consistent with the Ca-dependent increase in curvature that occurs
during steady flow. The subsequent reduction in κ̄tip occurs at large Ω , indicating
that unsteadiness is responsible for the reduction. In contrast, the A= 5 simulations
demonstrate a decrease in κ̄tip at low Ω , but then show an increase in κ̄tip over
approximately 0.05 < Ω < 0.2. For larger values of Ω the curvature again decreases.
The reduction in the average curvature at large Ω is a direct result of the negative
curvature that occurs during the reverse flow, demonstrated in figure 8(b).

Figure 9(c) demonstrates the average 
Ptip (
P tip) vs. Ω . For A= 1, 
P tip increases

monotonically. In contrast, for A= 5 
P tip demonstrates a slight reduction to a
minimum pressure drop that is nearly coincident with the minimum κtip. With increas-
ing Ω , 
P tip grows monotonically. Since this increase occurs over a range where κtip

has a local maximum, viscous contributions must be responsible for the increase in

P tip at large Ω .



16 M. E. Zimmer IV, H. A. R. Williams and D. P. Gaver III

Ca
–1.0 –0.5 0 0.5 1.0 1.5

–1

0

1

2

3

4

5

utip

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

2.0

Ω = 0.025

Ω = 0.085

Ω = 0.4

Steady

(a)

(b)

(c)

κtip

–1

0

2

3

1

4

x
–0.02 0 0.02

y

–0.4

0

0.4

∆Ptip

Figure 8. Stationary-state relationship between (a) the time-dependent velocity, (b) tip
curvature and (c) 
Ptip vs. Ca for CaM = 0.1, A = 5 and Ω = 0.025 (—), Ω = 0.085 (· · · · · ·)
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Figure 9. The effect of oscillation on (a) the average bubble velocity, (b) average tip curvature
and (c) average tip pressure drop. The percentage change in velocity is calculated as the change
in the cycle-averaged tip velocity with respect to the tip velocity for the steady case (Ω = 0).

Figure 10 shows the modification of the far-upstream dimensionless bubble width,
β̄ = β̄∗/a, that is predicted in the constant-amplitude pulsatile system over a range
of CaΩ ; β̄ was determined from mass conservation on a control volume surrounding
the bubble tip, which shows that β̄ = CaM/ūtip. The monotonic decrease in the bubble
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– – – quasi-steady approximations. Note the thickening of the residual film as CaΩ is increased.
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width is thus related directly to the monotonic increase in the average tip velocity
shown in figure 9(a). A quasi-steady prediction of β̄ is shown by the dashed lines in
figure 10. By conservation of mass,

β̄ =

∫ T

0

βutip dt∫ T

0

utip dt

(27)

where utip = Ca/β(Ca), β(Ca) is the steady-state bubble width prediction from Halpern
& Gaver (1994), T = 2π/Ω is the oscillation period, and Ca(t) is given by equa-
tion (3).

The calculation of a quasi-steady approximation of β̄ from (16) requires an approxi-
mation of the bubble width during bubble retraction (Ca(t) < 0). Two alternatives were
investigated:

(i) the bubble width during retraction is approximated as equal to the average
bubble width during forward bubble motion;
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(ii) the bubble width during retraction is approximated as equal to the bubble
width that existed during the forward phase at any given physical location.
The results of these models deviate from each other by less than 1 % over the range of
parameters we investigated, so method (i) is used for the quasi-steady approximations
given below.

The quasi-steady approximations are in good agreement with the BEM calculations
up to CaΩ ∼ CaM ; this range is extended with increasing A to include regions where
bubble retraction occurs (CaΩ >CaM ). This provides an estimate for the range
of Ω = 2CaΩ/A that can be predicted using quasi-steady analysis, and indicates
that for large A the average behaviour is faithfully captured using estimates from
constant forward-flow calculations, even though the unsteady problem includes bubble
retraction.

The predictions of bubble narrowing provided in figure 10 indicate that increasing
the frequency of oscillation will deposit a more voluminous film on the airway wall.
By increasing the film volume, the quantity of soluble surfactant contained within
the film would be commensurately increased. This film thickening could provide a
reservoir of surfactant that can be adsorbed to the air–liquid interface in cases of
diffusion limitation that can occur at low concentrations (Ghadiali & Gaver 2003).

4.2. Steady-state and instantaneous interfacial concentrations

Here we show the influence of the flow fields described above on the interfacial
concentration fields. In the descriptions below, the term ‘buildup’ indicates the relative
increase in the local concentration due to converging flow. When the concentration
exceeds Γmax =1.3, surfinactant is rejected from the 1◦ layer. Alternatively, ‘depletion’
refers to the relative decrease of concentration due to diverging flow. The steady-
state forward-flow interfacial concentration profile for CaM = 0.1 (figure 11a) shows
a buildup at the bubble tip and a depletion in the transition region caused by the
sweeping of fluid toward the bubble tip and the thin film from the transition region.
Concentration profiles for the monolayer model and the 1◦ and 2◦ layers of the
multilayer model are shown. At the bubble tip, the 1◦ layer concentration is limited
by the maximum concentration (Γmax = 1.3), with excess surfinactant collapsing from
the interface. Both monolayer and multilayer models demonstrate tip concentrations
that reflect rejection from the 1◦ interface layer. In the multilayer model case, this
rejection forms the 2◦ layer that, in turn, reduces desorption from the 1◦ layer.
This inhibition increases the concentration of the 1◦ layer over that seen from the
monolayer case.

Steady reverse-flow concentration profiles are given in figure 11(b) for CaM = −0.1.
The same principles discussed for surface transport in forward steady flow hold for
transport conditions characteristic of backward motion. Figure 11(b) shows buildup
in the transition region and depletion at the tip for both monolayer and multilayer
simulations. Both models show transition-region rejection from the 1◦ interface layer
either to the bulk (monolayer model) or to the 2◦ layer (multilayer model).

For the pulsatile investigations, we evaluate the constant-amplitude behaviour of
the system. As such, Ω and CaΩ are varied in concert to maintain a consistent stroke
length (A= 2CaΩ/Ω) over a wide range of oscillation frequencies. Figure 12 shows
the instantaneous capillary number for low (Ω =0.025), moderate (Ω = 0.085), and
high (Ω = 0.4) frequencies versus t for CaM = 0.1, A= 5. Reverse flow only occurs in
cases where CaΩ = AΩ/2 > CaM .

Figure 13 depicts the monolayer model Γ versus interfacial position (s) at evaluation
points (a–f ) corresponding to every 1/6 cycle for low (Ω =0.025), moderate
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Figure 11. Monolayer-model vs. multilayer-model steady-state interfacial surfinactant
concentration profiles for (a) forward and (b) reverse flow with CaM = ±0.1.

(Ω = 0.085), and high (Ω = 0.4) frequencies for CaM = 0.1, A= 5. Note that all
low frequency (Ω = 0.025) profiles have a characteristic tip concentration buildup
and corresponding depletion in the bubble transition region (s ∼ 0.5) similar to the
forward steady-state case (figure 11a). This quasi-steady behaviour occurs because
CaΩ = AΩ/2, and thus the variation in Ca is very small. High frequency (Ω =0.4)
behaviour is notably different – retrograde motion portions of the cycle (profiles e and
f ) show buildup in the transition region and depletion at the bubble tip similar to that
of steady backward flow (figure 11b). However, this buildup is not maintained during
the forward flow phases of the cycle, as evidenced by the low tip and transition-region
concentrations seen in profiles (b) and (c). Profiles (a) and (d) represent transition
states between the characteristic forward and reverse flow behaviour portions of the
cycle. In contrast, moderate frequency (Ω = 0.085) profiles combine characteristics of
the low and high frequency cases. Surfinactant buildup in the transition region during
retrograde flow can be seen in profiles (e) and (f ). Unlike the high frequency case,
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Figure 12. Capillary number vs. time for low (Ω = 0.025), moderate (Ω = 0.085), and high
(Ω = 0.4) frequencies for CaM = 0.1, A = 5. Note that the pulsatile amplitude increases with
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though, this buildup is maintained in the bubble cap region during forward-phase
portions of the cycle, as established by the tip concentration buildup seen in profiles
(a–d). As will be demonstrated below, this response has implications regarding
the cycle-averaged concentration response. Although not presented explicitly here,
qualitatively similar low, moderate, and high frequency behaviour is seen for the
multilayer model investigation of CaM = 0.1 and A = 1.

4.3. Cycle-averaged concentrations

To compare the overall system behaviour for a given CaM and A over a range of
dimensionless frequencies, concentration averaging techniques are implemented. A
cycle-averaged interfacial concentration profile is defined as

Γ̄ i(s) ≡ 1

T

∫ tconv+T

tconv

Γi(s, t) dt, (28)

where tconv is a time reflecting system convergence to stationary state, and T is the
oscillation period.

Figure 14 represents the monolayer model Γ̄ for low, moderate, and high frequencies
(Ω =0.025, 0.085, 0.4) for CaM =0.1, A= 5. For Ω = 0.025, Γ̄ is characterized by
significant buildup (Γ̄ ∼ 1.2) at the bubble tip and depletion in the transition region.
This profile resembles the concentration for steady forward motion. In contrast, at
Ω = 0.4 there is limited buildup of Γ̄ in the bubble transition region (Γ̄ ∼ 0.6 at
s ∼ 0.3), but an average surfinactant depletion (Γ̄ ∼ 0.3) exists at the tip. Finally, the
Γ̄ profile for the moderate frequency (Ω = 0.085) combines elements of both the high
and the low frequency profiles – relatively high concentration (Γ̄ ∼ 0.9) at the tip and
significant concentration in the transition region (Γ̄ ∼ 0.55 at s ∼ 0.5). The elevation
of Γ̄ at the bubble tip during moderate oscillation translates to a larger concentration
in the transition region at moderate s. Thus, the transport to the tip region has a
potentially significant impact on the concentration in the thin film.

Figure 15 represents Γ̄ i of the multilayer model primary (a) and secondary (b) layers
at low, moderate, and high frequencies (Ω = 0.025, 0.085, 0.4) for CaM = 0.1, A= 5. At
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Figure 13. Monolayer-model interfacial surfinactant concentration (Γ1) versus interfacial
position (s) at evaluation points (a–f ) spaced every 1/6th of the cycle for low (Ω = 0.025),
moderate (Ω = 0.085), and high (Ω = 0.4) frequencies for CaM = 0.1, A = 5.

low frequency (Ω = 0.025), Γ̄ 1 is similar to the monolayer case, showing significant
buildup (Γ̄ 1 ∼ 1.2) at the bubble tip and depletion in the transition region. Γ̄ 2 for
low frequency oscillation also shows significant buildup (Γ̄ 2 ∼ 1.8) at the bubble tip;
however for s > 0.5, there is an insignificant 2◦ layer present.

In contrast, at moderate frequency (Ω = 0.085) a buildup of Γ̄ 1 in the bubble transi-
tion region exists (Γ̄ 1 ∼ 0.6), and a high average surfinactant concentration (Γ̄ 1 ∼ 1.0)
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Figure 14. Monolayer-model cycle-averaged interfacial surfinactant concentration (Γ̄1(s))
versus interfacial position (s) for low (Ω = 0.025), moderate (Ω = 0.085), and high (Ω = 0.4)
frequencies for CaM =0.1, A = 5.

resides at the tip. As with the monolayer model, this increase in surfinactant concen-
tration translates to higher concentrations in the thin-film region. The Γ̄ 2 profile for
moderate oscillation also shows limited surfinactant presence at the tip and in the
transition region (Γ̄ 2 ∼ 0.25).

At high frequency (Ω =0.4), there is a buildup of Γ̄ 1 in the bubble transition region
(Γ̄ 1 ∼ 0.6), but a lower average concentration (Γ̄ 1 ∼ 0.35) exists at the tip. The Γ̄ 2

profile for high oscillation shows very low tip concentrations (Γ̄ 2 ∼ 0.1) and limited
transition-region buildup (Γ̄ 2(s) ∼ 0.3).

4.4. Cycle-spatial averaged concentrations

In order to provide a quantitative comparison of the average amount of interfacial
surfinactant in the bubble cap region for a given CaM and A combination, a
spatial average of Γ̄ i(s) of each dimensionless frequency was taken over the domain
0 � s � π/2. This cycle-spatial average is defined as

〈Γ̄ j 〉 ≡ 1

π/2

∫ s=π/2

s=0

Γ̄ i(s) ds. (29)

The range 0 � s � π/2 was selected because it encompasses the entire cap region for
a semicircular bubble. As such, all the dynamic recirculating activity near the bubble
tip should be contained in this portion of the domain.

Figure 16 shows the monolayer-model cycle-spatial averaging of interfacial surfinac-
tant concentration 〈Γ̄ 1〉 versus dimensionless frequency over the range 0.05 <Ω < 0.6
for CaM = 0.1, A= 5. The reference value for 〈Γ̄ 1〉 from steady-state CaM = 0.1 is also
presented. At low frequencies, the system tends to behave similar to the system under
steady-state forward motion conditions. As Ω is increased, 〈Γ̄ 1〉 increases to a peak
(〈Γ̄ 1〉 ∼ 0.38) near the moderate frequency (Ω ∼ 0.085) before quickly decreasing at
higher frequencies. This behaviour will be explained in § 5.

Figure 17 shows the multilayer model cycle-spatial average of interfacial surfinac-
tant concentration 〈Γ̄ i〉 versus Ω over the range 0.05 < Ω < 0.6 for CaM =0.1, A= 5.
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Figure 15. Multilayer-model cycle-averaged concentration of interfacial surfinactant (Γ̄i(s))
primary (a) and secondary (b) layers versus interfacial position s for low (Ω = 0.025), moderate
(Ω = 0.085), and high, (Ω = 0.4) frequencies for CaM = 0.1, A = 5.

The behaviour of 〈Γ̄ 1〉 is similar to that discussed for the monolayer case; however,
the concentrations for the multilayer model are greater than those of the monolayer
model. For example, the moderate frequency (Ω ∼ 0.085) peak is slightly higher
(〈Γ̄ 1〉 ∼ 0.4).

The 2◦ layer cycle–spatial average (〈Γ̄ 2〉) follows a different pattern from that of the
1◦ layer. With increasing Ω , 〈Γ̄ 2〉 decreases to a minimum before the primary layer
peak is reached (〈Γ̄ 2〉 ∼ 0.05 at Ω ∼ 0.075). As Ω is increased further, 〈Γ̄ 2〉 rebounds
slightly before again decreasing at higher Ω . The moderate frequency 〈Γ̄ 2〉 does not
recover to the 〈Γ̄ 2〉 for steady flow before the high-frequency attenuation is seen.
Despite this, the 2◦ layer is important because it increases the 1◦ layer cycle–spatial
average concentration (figure 17) through respreading and inhibited desorption, as
will be shown below.
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Figure 16. Monolayer-model cycle-spatial averaging of interfacial surfinactant concentration
(〈Γ̄1〉) versus dimensionless frequency for CaM = 0.1, A = 5. The steady-state Ca = 0.1
monolayer-model interfacial surfinactant concentration spatial average (s < π/2) is shown
for reference. ΩL = 0.025, ΩM =0.085 and ΩH = 0.4.
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Figure 17. Multilayer-model cycle-spatial averaging of interfacial surfinactant concentration
for primary (1◦) and secondary (2◦) layers (〈Γ̄i〉) versus dimensionless frequency for CaM = 0.1,
A = 5. The steady-state Ca= 0.1 multilayer-model interfacial surfinactant concentration spatial
averages (s < π/2) for both primary and secondary layers are shown for reference. ΩL = 0.025,
ΩM = 0.085 and ΩH = 0.4.

5. Discussion
We have shown above that oscillation superimposed on steady flow can modify the

instantaneous flow field of a viscous fluid surrounding a semi-infinite bubble. This
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Figure 18. Streamline examples of the four main types of interfacial flow convergence: I, tip
streamline convergence with a divergent transition-region stagnation point; II, tip streamline
divergence only; III, tip streamline divergence with a convergent transition-region stagnation
point; and IV, tip streamline convergence only.

results in an increase in the volume of liquid deposited onto the wall and modifies the
average curvature of the bubble tip, which directly influences the transport of surfinac-
tant to and from the bubble tip. In the previous section, we have shown that in the
parameter ranges investigated, the interfacial surfinactant distribution during steady
and pulsatile flow is non-equilibrium. buildup of surfinactant is directly coupled to
the location of converging stagnation points along the interface. During pulsatile
flow, a net increase of the average concentration in the bubble tip region over that
seen in steady flow can be achieved through dynamic changes in the flow field. The
goal of this section is to explain the interactions that result in surfinactant transport
optimization.

5.1. Flow field effects on surfinactant accumulation

To explore the convective flow dynamics, we define four distinct cases of interfacial
flow that can exist at any given time throughout a cycle of oscillation (figure 18 and
table 5). The occurrence of each of these types of behaviour throughout a cycle of
oscillation affects the buildup and retention of surfinactant in the bubble cap and
transition regions.

Figure 19 shows the fraction of each cycle described by each flow type for CaM = 0.1
and A= 5. We characterize the dynamic flow field throughout one oscillation cycle
over the range 0.025 � Ω � 0.4. At low frequencies (Ω � 0.04), the interface behaves
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Case Flow condition Tip stagnation Transition region stagnation

I Slow forward Convergent Divergent
II Fast forward Divergent –
III Reverse Divergent Convergent
IV Transition Convergent –

Table 5. Characteristics of the four main types of interfacial flow.
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Figure 19. Interface flow characterization of dynamic interface throughout one oscillation
cycle versus Ω for CaM = 0.1, A = 5. At any time, the interface can be classified into one of
the four main groups described in figure 18 and table 5. The fraction of a cycle spent in each
classification for a given frequency is presented.

as Case I throughout the cycle. With increasing Ω other categories of flow begin
to occur during the oscillation. The interaction of surfinactant transport and this
flow-field description can be used to explain the peak of 〈Γ̄ 1〉 presented in figure 16.

For example, at low frequencies 〈Γ̄ 1〉 is nearly equal to its value during steady-state
forward flow. This response coincides with Case I flow behaviour, driving surfinactant
to the bubble tip and depleting it from the transition and thin-film regions. As Ω

increases, the relative proportion of Case I flow decreases, and the fraction of Case III
flow increases. Case III flow occurs as the bubble retracts during portions of the cycle
and is responsible for buildup of surfinactant in the transition region. At moderate
frequencies (Ω ∼ 0.085), there is a sufficient balance between these two flow categories
to accumulate surfinactant in the transition region during reverse flow and maintain
it in the bubble tip region during forward flow. This balance is responsible for the
increase and peak of the cycle–spatial interfacial concentration shown in figure 16.
At higher frequency values (Ω ∼ 0.4) the relative proportions of both the Case I and
Case III flows are diminished. While there remains a portion of the cycle during which
surfinactant can be accumulated in the bubble transition region, the dominance of
the uniformly divergent Case II flow prevents this buildup from being maintained in
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Figure 20. As figure 19 but for A = 1.

the interfacial region near the bubble tip throughout the cycle. This is reflected by the
high-frequency attenuation of the cycle–spatial interfacial surfinactant concentration
(figure 16).

Figure 20 shows the flow-field characterization with a reduction in amplitude
(CaM = 0.1 and A = 1). The same general pattern of Case I–IV flows occurs over the
range of Ω as for A= 5 (figure 19). Following the rationale described above, the peak
transport should occur near Ω =1, since this frequency corresponds to the maximum
fraction of Case III flow. Beyond this frequency, the Case I behaviour diminishes dra-
matically, and Case II (uniform divergence) depletes surfinactant from the interface.

The shift of the peak transport to higher Ω with a decrease in A is demonstrated
in figure 21, which shows the relative behaviour of 〈Γ̄ 1〉 over the range of frequencies
for monolayer and multilayer simulations with CaM =0.1 and A= 1 and 5. With
multilayer simulations, respreading of the 2◦ layer during the tip flow divergence
phase provides a localized surfinactant reservoir that maintains the 1◦ layer at a
higher concentration as the frequency is elevated. At high frequencies, Case II flow
without commensurate Case III behaviour causes a downturn in the multilayer
average concentration profiles.

5.2. General principles of surfinactant accumulation

As demonstrated in the previous analysis, surfinactant accumulation in the transition
region is insignificant unless retrograde flow exists during a portion of the cycle.
For steady flow, this can only occur if Ca < 0. For unsteady flow, reverse flow will
occur during a portion of the cycle if CaΩ > CaM . Recalling that CaΩ = AΩ/2, the
global onset of reverse flow will depend on stroke amplitude and frequency. We
define Ωmin = 2(CaM/A) as the minimum frequency necessary to induce flow reversal.
This relationship explains why an increase in A results in the decrease in Ω related
to optimal sorption. Note, however, that the onset of Case III flow is not precisely
aligned with Ωmin because the dynamic behaviour of the interface may allow forward
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Figure 21. Cycle-spatial interfacial surfinactant concentration profiles versus Ω for
monolayer and multilayer simulations with CaM = 0.1 and A = 1, 5.

flow to exist during parts of the cycle where Ca(t) < 0. This is particularly evident
in figure 20, where Ωmin = 0.1, but Case III behaviour is only observed for Ω > 0.4.
Nevertheless, the onset of retrograde motion is a key factor in the accumulation of
surfinactant at the interface.

At frequencies less than Ωmin, a slight increase in the cycle-spatial interfacial concen-
tration over that seen for the steady reopening can occur due to the fluid mechanical
effects associated with the dynamic flow. For example, in the case of Ω = 0.025 for
CaM = 0.1 and A= 5 (figure 16), 〈Γ̄ 1〉 is elevated with respect to the CaM = 0.1 case
due to the dynamic change in position of the transition-region stagnation point. While
this increase can occur for Ω < Ωmin, the induction of reverse flow when Ω > Ωmin has
a much more pronounced effect. At moderate frequencies, a balance of Case I and
Case III flows allows for the local deposition of surfinactant in the transition region
during retrograde flow portions of the cycle and retention of this buildup in the bubble
cap region throughout forward flow portions of the cycle. This results in a peak in
the cycle-spatial averaged concentration. Finally, at very high frequencies the large
instantaneous Ca causes uniformly divergent Case II flow that sweeps surfinactant
away from the cap region of the bubble. Any buildup created during a portion of the
high-frequency cycle is irreversibly lost to the thin film. The dominance of Case III
flow at elevated frequencies is responsible for the maximized peak accumulation seen
at an optimal oscillation frequency Ωpeak.

Figure 21 shows that for multilayer simulations, inhibited desorption due to 2◦

layer formation elevates 〈Γ̄ 1〉 with respect to corresponding monolayer data. The
uniform interfacial flow divergence (Case II) at high frequencies allows respreading
of the 2◦ layer, providing a localized surfinactant reservoir that maintains the 1◦ layer
at a higher concentration for these elevated frequencies. This behaviour explains the
reduction of 〈Γ̄ 2〉 near Ωpeak as shown in figure 17. This results in a shift of Ωpeak to
a higher frequency when multilayer dynamics are incorporated.
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5.3. Limitations

As with all modelling studies, there are several limitations to the analyses presented
herein. Primarily, these limitations include the absence of non-equilibrium surface
tension and Marangoni stresses in the system, neglecting the effect of fluid inertia
near the bubble tip, and the possibility of unsteady Stokes flow at high frequencies.
In addition, the model does not take into account any mechanical characteristics of
multilayer interfacial structures, nor does it allow for multiple multilayer formation.

If an equation of state relating interfacial tension to local surfactant concentration
were incorporated into the model, the interfacial rigidification caused by the
Marangoni stresses would modify surfactant convection along the meniscus. Ghadiali
& Gaver (2003) showed that non-equilibrium surface tensions and Marangoni stresses
can be very large and can modify flow fields and surfactant distributions from the
constant surface tension case. The inclusion of Marangoni stress would allow sur-
factant deposited along the interface to convect to regions of lower concentrations.
However, when concentrations become very large, the slope of the equation of state
decreases. Thus, when Γ is large, the Marangoni stresses may lose their significance.
Nevertheless, Marangoni stresses are likely to result in a modification of the frequency
range of elevated transport for any given combination of CaM and A.

As described in § 2.2, we scaled-up Ca from 10−3 to 10−1 for numerical tractability.
Although the values of St and Pe were commensurately modified to provide the
correct transport balances, some of the properties of this system may still deviate
from those of the physiological system. In particular, by increasing Ca, we observe
Case II (uniformly divergent) flow during high-frequency oscillation. This flow field is
responsible for the reduction of interfacial transport (§ 5.2). This type of flow would
not be likely in the lung under constant surface tension conditions, because it is
associated with very large Ca (i.e. Ca(t) > 0.5). However, with surface activity and a
buildup of surfactant at the bubble tip, we expect that the forward phase may occur
with very small tip surface tension. This could result in large Ca =µQ/(2aγ ) for even
a moderate flow rate. Thus, under physiological conditions the Case II behaviour
may continue to exist, albeit at lower velocities than those observed in the present
study.

Our model has neglected inertial effects. Far from the bubble tip this assumption
is acceptable because the Reynolds number based upon the convective velocity
(Re = ρQ∗

2−d/2µ) is too small to induce significant effects. However, near the bubble
tip the effects of inertia are governed by Re/Ca = ργ a/µ2. As Heil (2000, 2001) has
demonstrated, these inertial effects can be significant for semi-infinite bubbles in rigid
tubes or with flexible airways. It is important to recognize that our assumption might
limit the validity of this analysis due to modification of convection patterns resulting
from these inertial effects.

We have also neglected unsteady effects in our solution to the viscous flow field,
though we included unsteadiness in the kinematic boundary condition. At high
frequencies, it is possible that the assumption of Stokes flow is not valid. In general,
to neglect unsteadiness the system Womersley number (α = a

√
ω/ν), a measure of flow

unsteadiness in the system, should be small. If α > 1, the Stokes boundary layer will
be small compared to the channel width, and could modify the flow field significantly
near the interface. In addition, the inclusion of inertia in unsteady flows leads to
phase differences between the pressure and flow fields. Future studies should thus
investigate the effects of Stokes boundary layers and the impact of the pressure/flow
phase lag on the behaviour of the system.



Pulsatile motion of a semi-infinite bubble in a channel 31

The model does not account for any structural characteristics of interfacial multi-
layers. The current model presumes that the multilayer only serves to alter the tran-
sport characteristics of the 1◦ interfacial layer. It is possible that the presence of
multilayer structures tethered to the meniscus interface could alter the effect of the
flow field on the bubble. If the multilayer model is not trilayer-limited (single 1◦ layer
and double 2◦ layer), formation of multiple multilayers could allow for increased
amounts of localized respreading and affect the mechanical characteristics of the
surface structures.

6. Conclusions
In this paper, we have investigated the pulsatile motion of a semi-infinite bubble in

a narrow channel and predicted the adsorption of inactive surface-active contaminant
to the interface. This problem may be important for understanding film deposition
processes. Our particular interests relate to surfactant deficiency in the lung. In the
present study, a two-dimensional computational model of a pulsatile semi-infinite
bubble delivery system was developed. It incorporates interfacial flow characteristics,
multilayer transport dynamics, and flow-field characteristics of fluid surrounding the
bubble tip using a coupled lubrication theory and boundary element method strategy.
This model demonstrates that cyclic stretching and contraction of the penetrating
interface could enhance surfactant deposition and retention in the bubble cap region,
thereby increasing the penetration depth of surfactant delivery and minimizing
potential lung injury from high ventilation pressures.

Computational analysis of the system at a fixed CaM and A identified a range
of frequencies of oscillation that may increase the transport of a passive surface-
associated contaminant (surfinactant). While the dynamic interfacial modification
seen at low frequencies can lead to limited surfinactant accumulation in the bubble
cap region (Case I), a minimum critical frequency Ωmin must be achieved in order to
induce retrograde flow during portions of the pulsatile cycle. Creation of retrograde
flow allows for the focused deposition of surfinactant away from the bubble tip in the
interfacial transition region. This retrograde deposition is retained in the bubble cap
region at moderate frequencies (Case III), but it is lost to the thin-film region at high
frequencies as a result of uniform interfacial flow divergence due to rapid forward
motion during the cycle (Case II). Before this divergence occurs, an optimal frequency
(Ωpeak) exists that maximizes surfinactant retention in the bubble cap region.

It can be noted that decreasing A shifts Ωpeak to higher frequencies (figure 21).
While this may be seen as an advantage for the larger A case, the maximum cycle-
spatial average of surfinactant is significantly higher for the lower amplitude system.
For a given CaM , we hypothesize that a specific A could be identified that produces
a minimized optimal frequency while maintaining sufficient peak concentrations.
Extending this theory to physiologic models suggests that a combination of low
oscillation frequency and high interfacial surfactant concentrations might lead
to minimized lung epithelial damage and maximized effectiveness of surfactant
replacement therapy. However, it is necessary to improve our models to account
for physiochemical effects and fluid–structure interactions prior to making specific
estimates of optimal ventilation frequencies and amplitudes.
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